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A B S T R A C T

A highly reliable tool for transient simulation is vital in the safety analysis of a nuclear reactor. Despite this fact
most tools still use diffusion theory and point-kinetics that involve many approximation such as discretization in
space, energy, angle and time. However, Monte Carlo method inherently overcomes these restrictions and
provides an appropriate foundation to accurately calculate the parameters of a reactor. In this paper funda-
mental parameters like multiplication factor (Keff) and mean generation time (tG) are calculated using Monte
Carlo method and then employed in transient analysis for computing the neutron population, proportional to
Keff, during a generation time considering precursors decay. Based on this approach, a dynamic Monte Carlo
code named MCSP (Monte Carlo dynamic Simulation of Particles tracking) is developed for both the steady state
and time-dependent simulation of particle tracking in an arbitrary 3D geometry. MCSP is able to use either
continuous or multi-group energy cross section libraries. To speed up the simulation, the MCSP was empowered
with parallel processing as well. Several test problems such as C5G7, LMW and TWIGL are examined to assess the
performance of the method.

1. Introduction

A rigorous safety analysis is needed to predict the behavior of nu-
clear reactor in either steady-state or transient modes. The time de-
pendent angular flux spectrum in a time-variable system can be cal-
culated by the time-dependent transport equation which may be
written as (Bell and Glasstone, 1970):
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The corresponding time-dependent precursor equation is:
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Where → ′ → ′ → ′ ′Σ r E E Ω Ω dE dΩ( , , )s is the scattering cross section
that of a neutron of direction ′Ω and energy ′E has a collision, there will
scatter a neutron in a direction interval dΩ about Ω̂with energy in dE
aboutE , →Σ r E( , )t and →Σ r E( , )f are total and fission cross section re-
spectively, → ′ ′ϕ r E Ω t( , , ˆ , ) is the angular flux and →S r E Ω t( , , ˆ , )ext is the
external neutron source, Cj , λj and βj are the population, decay con-
stants and fraction of delayed neutron precursor fission fragment of jth

group, β is the total fraction of delayed neutrons, v E( )is the neutron
speed with energy E and ν̄ is the average number of neutron released
per fission.

Since finding an analytic solution for Eq. (Hoffman, 2013) and Eq.
(Argonne Code Center, 1977) is difficult except for a few isolated
simplified cases, numerous simplifications like spatial homogenization
and multi-group energy collapsing are routinely invoked in engineering
solutions (Bell and Glasstone, 1970). The complexity of a time varying
geometry is usually ignored by replacing them with a fixed system as
well. However, the study of time-dependent geometry becomes un-
avoidable in some scenarios e.g. the investigation of neutron noise
caused by the control rod vibration or in the rod ejection transient.
Adopting the mentioned simplifications makes the validity of the an-
swer questionable. A reliable alternative for removing the limitations is
the Monte Carlo (MC) method which directly simulates the particle
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transport phenomena as a stochastic process. The MC does not solve
any explicit equation, but estimates the answer through the mean be-
havior of particles following the record of histories. The MC technique
has proved useful in special cases where other methods encounter dif-
ficulties. Moreover, it is perfect for detailed variation of cross sections
with energy and time, or where the treatment of a moving/fluctuating
boundary is necessary. In sum, the MC technique is well suited for the
analysis of complicated three-dimensional, time-dependent problems.

There are two main approaches to analysis the time-dependent be-
havior of a nuclear system. The first one is to turn the problem into an
eigenvalue system. Although the system eigenvalues can be classically
calculated using deterministic methods, more accuracy is still achiev-
able using the MC based schemes. The time evolution of the power can
be approximated, using point-kinetic equations with the largest eigen-
value, (Shayesteh and Shahriari, 2009; S. Yun et al., 2008; Arzhanov,

2002; Abdou, 2005). The second approach is a direct solution of the
problem within time steps. The mission might be carried out using
several solution techniques including quasi-static methods (J.
Kotchoubey, 2015; R. E. Alcouffe and Baker, 2005; S. Goluoglu and H.
Dodds, 2001; J. C. Gehin, 1992; K. S. Smith, 1979), Monte Carlo
methods (Sjenitzer and Hoogenboom, 2011) and the Method of Char-
acteristics (S. C. Shaner and thesis, 2014; Adam J. Hoffman, 2013).

Based on the MC method, a code named MCSP (Monte Carlo dy-
namic Simulation of Particles tracking) is developed to simulate the
time-dependent transport of neutrons, photons and electrons and po-
sitrons in an arbitrary geometry. The concept of fundamental para-
meters such as multiplication factor (Keff), mean generation time (tG)

Fig. 1. Flowchart of MCSP for transient analysis.

Table 1
Cross section for benchmark problem 1.

−Σ cm( )t 1 −Σ cm( )a 1 −Σ cm( )f 1 −Σ cm( )s 1

1.0000→ 0.9988 0.5882→ 0.5870 0.2500 0.4118

V = 2.2E+4 cm/s, ν =2.5.

Table 2
Delayed neutron parameters for the benchmark problem 1.

Family −λ s( )1 β

1 0.0127 0.000260
2 0.0317 0.001459
3 0.1156 0.001288
4 0.3110 0.002788
5 1.4000 0.000877
6 3.8700 0.000178
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and delayed neutron precursors are computed by MCSP and applied in
the proposed approach. Neutron population grows with Keff in a gen-
eration time and precursors decay during this period. The MCSP code is
able to calculate time-dependent flux as well as neutronic parameters
such as the effective multiplication factor, neutron life time, etc. MCSP
might be used either with continuous or multi-group energy cross
section library. Rigorous test problems such as C5G7, LMW, TWIGL, etc.

are examined to evaluate the performance of the method. Results are in
satisfactory agreement with the reference results.

It is noteworthy that the computation cost depends on many para-
meters such as the number of particles started (NPS), the multiplication
factor, mean generation time of the system, the total time simulated,
etc. To speed up the simulations, process is performed in parallel and
the elapsed time is given for 1 CPU and 48 CPUs to show advantage of
parallel processing. The processors used were 2.2 GHz AMD Opteron
(tm).

The rest of the article is organized as follows: In section 2, the
methodology employed for the work is described in detail. Numerical
simulations and benchmark problems are studied in section 3. The
paper is finalized with a discussion on the results as well as a conclusion
in section 4.

2. Methodology

The behavior a neutron is considered stochastically within a system
based on the MC method. A neutron is absorbed, scattered or leaked out
in its life time (tG), which is too short, while the density of delayed
neutron precursors changes slowly and the conditions of a system do
not change in this short time. Therefore, the system is treated similar to

Fig. 2. Relative flux vs. time for benchmark problem 1.

Table 3
The total calculation time for the benchmark problem 1.

1 CPU (Hours) 48 CPUs (Hours)

11.3 0.3

Fig. 3. Schematic of benchmark problem ANL 16-A1.

Table 4
Cross section for benchmark problem ANL 16-A1.

Region Group −Σ cm( )t 1 −Σ cm( )a 1 −Σ cm( )f 1 → −Σ cm( )s
g g 1 → ′ −Σ cm( )s

g g 1

1 and 7 1 2.411E-1 3.902E-3 8.3441E-4 2.336E-1 3.598E-3
2 4.172E-1 1.020E-2 3.2776E-4 4.070E-1 0.0

2, 4 and 6 1 1.849E-1 5.115E-3 7.4518E-3 1.777E-1 2.085E-3
2 3.668E-1 1.310E-2 1.1061E-2 3.537E-1 0.0

3 and 5 1 9.432E-2 6.893E-3 0.0 8.571E-2 1.717E-3
2 1.876E-1 1.630E-2 0.0 1.713E-1 0.0

V1 = 5.4E+8 cm/s, V2 = 9.19E+7 cm/s, X1= 1.0, X2= 0.0, ν =1.0016.

Table 5
Delayed neutron parameters for benchmark problem ANL 16-A1.

Family −λ s( )1 β

1 0.0129 0.000081
2 0.0311 0.000687
3 0.1340 0.000612
4 0.3310 0.001138
5 1.2600 0.000512
6 3.2100 0.000170
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Fig. 4. Relative power vs. time for benchmark problem 16-A1.

Fig. 5. Normalized flux vs. radial position for problem 16-A1 (group 1).

Fig. 6. Normalized flux vs. radial position for problem 16-A1 (group 2).
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a steady state system during a tG.
The MCSP estimates the flux, the criticality eigenvalue Keff and the

removal life time of neutron similar to the MCNPX code (D. B. Pelowitz,
2008). The multiplication factor (Keff) is estimated through averaging
three different procedures called absorption, collision and track length
estimators. They are obtained from the following equations, respec-
tively.
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Where Σfg, Σcgand Σtg are the macroscopic fission, capture and total
cross section in neutron energy group gth respectively and gis neutron
energy group during the cthcollision. H is the total number of histories,
N is the number of neutron in any history, c is the number of neutron

collisions during its lifespan, Wi c, is weight of theith neutron during the
cthcollision, S is the distance between two collision and R is the distance
between the last collision point and boundary of system for neutron
leaks.

Then the Keff for hthcycle is estimated as follows:

= + +K K K K[ ]/3eff
h A C TL (6)

And the final Keff of the system is estimated by averaging over all active
cycles as follows:
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Furthermore, the MCSP is able to calculate the neutron mean gen-
eration time (tG) as follows (Rief and Kschwendt, 1967):
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Where = ∑ =t L vg/n c c
C

n c, 1 , is the time interval of the cthcollision of the nth

source particle, vg is the speed of neutron in energy groupgth and Σfg
and Σtg are the macroscopic fission and total cross section in neutron
energy group gth respectively.

In MCSP, the total simulation time (T) is divided into time steps
each lasts ΔT. The values of the multiplication factor (Keff) and the
mean generation time (tG) are calculated at the beginning of each time
step. In the case of time-varying cross sections or changing of bound-
aries, variations are exerted at beginning of each time step. This method
assumes that these values are constant during ΔT and the system will
not change during this time step (ΔT). On the other hand, the popula-
tion of the prompt neutrons and precursors are interdependent and
change after each mean generation time (tG). Therefor each time step
(ΔT) divides into sub-steps each lasts tG and the prompt neutrons and
the precursor population are calculated using the time-dependent Eq.
(7) in each sub-steps. Production of fission neutrons in next generation
(tG second later) is equal to ×K Neff that the production of prompt
neutrons is − × ×β K N(1 ) eff and formation of the precursor of the ′g th

group is equal to × ×′β K Ng eff where = ∑ ′=
′

′β βg
G

g1 and ′βg is the fraction
of the delayed neutron in group ′g th. The rate of the production of the
delayed neutrons in every group is equal to the rate of the radioactive
decay of precursors of the same group, i.e. ′ ′λ Cg g . Therefore, the total
rate of production of delayed neutrons can be considered as a source
with strength = ∑ ′=

′
′ ′Sd λ Cg

G
g g1 where ′Cg and ′λg are the population and

decay constants of delayed neutron precursor of ′g th group respectively.
The total number density of prompt neutrons and the power are express
as follows:
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Where ′N t( ) is the total number of prompt neutrons, ′Ng
t( ) is the number

of gthgroup the prompt neutrons, ′
′Cg

t( )is the number of the ′g th group the

Table 6
The total calculation time for benchmark problem ANL 16-
A1.

1 CPU (Hours) 48 CPUs (Hours)

15.15 0.5

Fig. 7. Schematic of TWIGL transient problem.

Table 7
Cross section for the TWIGL benchmark problem.

Region Group −Σ cm( )t 1 −νΣ cm( )f 1 −Σ cm( )a 1 → −Σ cm( )s
g g 1 → ′ −Σ cm( )s

g g 1

1 1 0.238095 0.007 0.01 0.218095 0.01
2 0.83333 0.200 0.15 0.68333 0.00

2 1 0.238095 0.007 0.01 0.218095 0.01
2 0.83333 0.200 0.15 0.68333 0.00

3 1 0.25641 0.003 0.008 0.23841 0.01
2 0.66667 0.060 0.05 0.616667 0.00

V1 = 1.0E+7 cm/s, V2 = 2.0E+5 cm/s, X1= 1.0, X2=0.0, ν =2.43, β =0.0075, λ =0.08 s−1.
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precursors, ′Σf g
t
,

( ) is the macroscopic fission cross section, vgis the average
speed of gthgroup, Ef is the recoverable energy per fission, VF is the
volume of the fissile elements and ′P t( ) is power generated from all
energy groups after t ́second. Fig. 1 presents the flowchart of the MCSP
for dynamic transient analysis and how it is divided into time steps and
sub-steps. It should be noted that t denotes the coarse time steps and t ́
represent fine time sub-steps.

The MCSP uses the implicit capture method. In this method the
weight of each neutron (W) is reduced − ×( ) W1 σ

σ
c
t

after each colli-
sion where σc and σt are the capture and total cross section of the col-
lision nuclide at the incoming neutron energy. If the new weight is
below the problem weight cutoff (WC2=0.25), Russian roulette is
played and with probability W/WC1 the particle survives with new

weight WC1 (WC1=0.5); otherwise the particle is killed, resulting
overall in fewer particles with larger weight. It should be noted, the
weight of all sampled neutrons is considered one.

2.1. Numerical results

Each benchmark is executed using 300 cycles leaving first 100 cy-
cles as inactive cycles. The number of source histories per cycle is 106.
The cross section tables used for each problem are given in the fol-
lowing test problems.

2.2. Problem 1: a cube with time-varying cross sections

As the first example, a system with time-varying cross sections is
studied. The system is a small cube of 10× 20×24 cm with vacuum
boundaries. It is made of a homogeneous material with one neutron
energy group and six delayed neutron precursor groups listed in Table 1
and Table 2. The arrows in the table indicate the cross sections that are
step-changed in this transients. Change is applied at t= 10 s and the
system is returned to its former state at t= 40 s. The transient is in-
itialized using an eigenvalue problem. We calculated the eigenvalue

Fig. 8. The relative power vs. time for the step transient in the TWIGL transient problem.

Fig. 9. The relative power vs. time for the ramp transient in the TWIGL transient problem.

Table 8
The total calculation time for the TWIGL transient problem.

Transient mode 1 CPU (Hours) 48 CPUs (Hours)

Step 10.2 0.25
Ramp 101.8 2.4
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equal to 1.00000 (± 0.00002) and mean generation time equal to
7.33E-6 (± 3.7E-10) second. The relative flux versus time is shown in
Fig. 2 (with time step ΔT=0.1 s) where an excellent agreement with
the results of Dynamic Tripoli which is based on MC method (Sjenitzer
and Hoogenboom, 2011) is observed there. MCSP also proves its ability
to simulate the long term effects dominated by the delayed neutrons,
well. It is noteworthy that the maximum estimated relative standard
deviation is 4.68E-03 and is observed at t= 40 s. Moreover, a com-
parison of the total calculation time is presented in Table 3. As can be
seen from Table 3, the time spent with 48 CPUs is much less than
computing time with a CPU (It is 37.67 times faster). This indicates an
increase in the performance of this method and a large amount of time
saving.

It can be clearly seen that there is first a positive reactivity step and
then a negative reactivity step. In this case it is the absorption cross

section of the entire system that changes, which could represent for
example a control rod movement.

2.3. Problem 2: ANL 16- A1 benchmark problem

Problem ANL 16-A1 is a 1-D time-dependent transport problem in a
fast reactor. The system consists of a seven-region slab that is sur-
rounded by vacuum. Geometry of the problem is displayed in Fig. 3.
The system is composed of homogeneous materials with two neutron
energy group and six delayed neutron precursor groups as listed in
Table 4 and Table 5. The system is perturbed by increasing the density
of material in zone 2 and decreasing the density if material in zone 6 by
5% at time zero. The transient is initialized using an eigenvalue pro-
blem. MCSP calculated the eigenvalue equal to 1.00001 (± 0.00004)
and mean generation time equal to 3.73E-7 (± 1.2E-10) second. The
relative power versus time is shown in Fig. 4 (with time step
ΔT=0.000001 s until t = 0.01s and ΔT=0.01 s until t= 0.1 s and
ΔT=0.1 s until t = 10 s) and the normalized flux for group 1 and 2 are
shown in Figs. 5 and 6 respectively. MCSP shows excellent agreement
with the TDTORT results which is a discrete ordinate transport code
(Goluoglu and Dodds, 2001). It is noteworthy that the maximum esti-
mated relative standard deviation is 3.69E-03 and is observed at
t= 10 s. Moreover, a comparison of the total calculation time is pre-
sented in Table 6. As can be seen from Table 6, the time spent with 48
CPUs is much less than computing time with a CPU (It is 30.3 times
faster). This indicates an increase in the performance of this method
and a large amount of time saving.

2.4. Problem 3: 2D TWIGL benchmark problem

TWIGL is a 2-D reactor, 1.6 m along each side with vacuum
boundary conditions. The problem geometry is displayed in Fig. 7.
Three different materials with two neutron energy groups and one de-
layed neutron precursor group are considered for the problem with the
data given in Table 7. Two transients are initiated either by decreasing
Σa2 in region 1 by 0.0035 as a step perturbation or by decreasing Σa2 in
region 1 by 0.0035 as a ramp perturbation for 0.2 s. Each of the TWIGL
transients begin from an assumed steady state critical condition (using
the change in the value of ν). This state is initialized using an eigen-
value problem. MCSP calculated the eigenvalue equal to 1.00005
(± 0.00005) and mean generation time equal to 4.13E-5 (± 7.2E-08)

Fig. 10. Schematic of the LMW core layout on the X-Y page.

Fig. 11. Schematic of the LMW core layout for the initial state (left) and final state (right) on the X-Z page.
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second. As conceived from Fig. 8 and Fig. 9, the relative power for step
and ramp perturbation (with time step ΔT=0.01 s) calculated by
MCSP agrees very well with the TDTORT which a discrete ordinate
transport code (Goluoglu and Dodds, 2001) and DeCART which is based
on MOC method (Adam J. Hoffman, 2013). It is noteworthy that the
maximum estimated relative standard deviation is observed at t= 0.5 s
equal to 1.14E-03 for step and 1.22E-03 for ramp perturbation. More-
over, a comparison of the total calculation time is presented in Table 8.
As can be seen from Table 8, the time spent with 48 CPUs is much less
than computing time with a CPU (It is almost 42 times faster). This
indicates an increase in the performance of this method and a large
amount of time saving.

As seen in Fig. 8, following an initial prompt jump, the power rises
relatively slowly and then reaches an asymptotic behavior at the end of
the transient.

In contrast, no prompt jump is observed in the ramp transient. The
power surges exponentially at first, and then, a relatively slow incre-
ment is pursued to becoming almost constant at the end of the transient.

Table 9
Cross section for the LMW transient problem.

Region Group −Σ cm( )t 1 −νΣ cm( )f 1 −Σ cm( )a 1 → −Σ cm( )s
g g 1 → ′ −Σ cm( )s

g g 1

1 1 0.234097 0.00647769 0.01040206 0.206139 0.0175555
2 0.935525 0.11273280 0.08766217 0.847863 0.0

2 1 0.234097 0.00647769 0.00109521 0.205589 0.0175555
2 0.935525 0.11273280 0.09146217 0.844063 0.0

3 1 0.233818 0.07503284 0.01099263 0.205648 0.0171777
2 0.950822 0.13780040 0.09925634 0.851565 0.0

4 1 0.203970 0.0 0.00266057 0.173713 0.0275969
2 1.262620 0.0 0.04936351 0.121325 0.0

V1 = 1.25E+7 cm/s, V2 = 2.5E+5 cm/s, X1= 1.0, X2= 0.0, ν =2.5.

Table 10
Delayed neutron parameters for the LMW transient problem.

Family −λ s( )1 β

1 0.0127 0.0002470
2 0.0317 0.0013845
3 0.1150 0.0012222
4 0.3110 0.0026455
5 1.4000 0.0008320
6 3.8700 0.0001690

Fig. 12. The relative power vs. time for the LMW transient without Feedback.

Table 11
The total calculation time for the LMW transient problem.

1 CPU (Hours) 48 CPUs (Hours)

216.9 4.8

Table 12
Delayed neutron parameters for C5G7 transient problem.

Family −λ s( )1 β

1 0.0127 0.0002470
2 0.0317 0.0013845
3 0.1150 0.0012220
4 0.3110 0.0026455
5 1.4000 0.0008320
6 3.8700 0.0001690

Table 13
Energy group structure for C5G7 transient problem.

Group Etop (eV) Ebottom (eV) Vmidpoint (cm/s)

1 2.0E+7 1.0E+6 4.48E+9
2 1.0E+6 5.0E+5 1.20E+9
3 5.0E+5 3.0E+0 6.92E+8
4 3.0E+0 6.25–1 1.86E+6
5 6.25E-1 1.0E-1 8.33E+5
6 1.0E-1 2.0E-2 3.39E+5
7 2.0E-2 1.0E-5 1.85E+5

M.G. Mazaher, et al. Progress in Nuclear Energy 115 (2019) 80–90

87



2.5. Problem 4: LMW LWR benchmark problem

The LMW (Langenbuch-Maurer-Werner) represent a simplified LWR
transient problem with the geometry sketched in Fig. 10 and Fig. 11. It
is made of homogeneous materials with two neutron energy group and
six delayed neutron precursor groups as listed in Tables 9 and 10. The
transient involves the withdrawal of a bank of four partially-inserted
control rod (Rod Group #1 is pulled out at the speed of 3.0 cm/s,
0≤ t≤ 26.666 s) and the insertion of a bank of five control rods sub-
sequently (Rod Group #2 is inserted at the speed of 3.0 cm/s,
7.5≤ t≤ 47.5 s). The LMW transients begins from an assumed steady-
state critical condition (using the change in the value of ν). This state is
initialized using an eigenvalue problem. MCSP calculated the eigen-
value equal to 1.00029 (± 0.00005) and mean generation time equal
to 3.66E-5 (± 4.5E-08) second. The relative power versus time is
shown in Fig. 12 (with time step ΔT=0.1 s). As observed in this figure,

the MCSP poses excellent agreement with the CUBBOX (J. C. Gehin,
1992) and POLCA-T (J. Kotchoubey, 2015) which are diffusion codes. It
is noteworthy that the maximum estimated relative standard deviation
is 8.09E-03 and is observed at t= 20 s. Moreover, a comparison of the
total calculation time is presented in Table 11. As can be seen from
Table 11, the time spent with 48 CPUs is much less than computing
time with a CPU (It is 45.19 times faster). This indicates an increase in
the performance of this method and a large amount of time saving.

As Fig. 12 shows, at first the power increases slowly following the
positive reactivity injected by withdrawal of Rods Group #1. The trend
is halted back by negative reactivity injected by insertion of Rods Group
#2. This process continues until negative reactivity overcome the po-
sitive reactivity and after that, the power begins to decrease.

Fig. 13. Schematic of C5G7 core layout for the initial state (left) and final state (right).

Fig. 14. Schematic of C5G7 fuel assembly layout.
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2.6. Problem 5: the C5G7 benchmark problem

Treating complex geometries without homogenization is one of the
main advantages of the Monte Carlo approach. To emphasize on this, a
more realistic problem is studied. The C5G7 is a small reactor core with
sixteen fuel assemblies and it uses a seven-group cross section library.
The data for the problem are given in reference (Adam J. Hoffman,
2013). Parameters used for solving the C5G7 transient problem listed in
Table 12 and Table 13. The assemblies are 21.42 cm square and it is
surrounded by a water reflector of the same thickness. Each of the as-
semblies is composed of 17× 17 fuel pins or guide tubes which are
surrounded by moderator. Each pin cell is 1.26 cm square and the fuel
pins have a radius of 0.54 cm and are centered in the pin cell (Adam J.
Hoffman, 2013). Schematic of C5G7 reactor core layout and its pin cell
geometry is displayed in Fig. 13 and Fig. 14.

The transient will be initialized by ejecting control rods in the
southeast UO2-CR assembly. Because the C5G7 is a very small reactor,
ejecting control rods causes a fast exponential increase in power. The
C5G7 transient begins from an assumed steady-state critical condition,
(using the change in the value of ν). This state is initialized using an
eigenvalue problem. MCSP calculated the eigenvalue equal to 1.14758
(± 0.00005) and mean generation time equal to 3.36E-5 (± 2.82E-08)
second. The relative power versus time is shown in Fig. 15 (with time
step ΔT=0.001 s). MCSP shows good agreement with the DeCART
results which is based on MOC method (Adam J. Hoffman, 2013). It is
noteworthy that the maximum estimated relative standard deviation is
2.01E-03 and is observed at t= 0.05 s. Moreover, a comparison of the
total calculation time is presented in Table 14. As can be seen from
Table 14, the time spent with 48 CPUs is much less than computing
time with a CPU (It is 45.78 times faster). This indicates an increase in

Fig. 15. The relative power vs. time for the step transient in the C5G7.

Table 14
The total calculation time for the C5G7 transient problem.

1 CPU (Hours) 48 CPUs (Hours)

43.95 0.96

Fig. 16. The relative power vs. time in the problem 6 with Continuous cross section.

Table 15
The total calculation time for the Continuous energy
transient problem.

1 CPU (Hours) 48 CPUs (Hours)

21.8 0.6
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the performance of this method and a large amount of time saving.

2.7. Problem 6: a transient system with continuous energy structure

In order to assess the performance of MCSP in the analysis of a
transient system with continuous energy, the cuboid of the first
benchmark is made of pure 235U. The density is adjusted to make a
critical system and the transient is generated by an increase in density.
The density increase from 4.4925E-02 atoms/b.cm to 4.5000E-02
atoms/b.cm at t= 10.0 s and the system is returned to its initial state at
t= 40.0 s. The transient is initialized using an eigenvalue problem.
MCSP calculated the eigenvalue equal to 0.99999 (± 0.00005) and
mean generation time equal to 6.00E-9 (± 2.5E-11) second. The re-
lative power versus time is shown in Fig. 16 (with time step ΔT=0.1 s)
and it shows good agreement with Dynamic Tripoli results which is
based on MC method (Sjenitzer and Hoogenboom, 2012). It is note-
worthy that the maximum estimated relative standard deviation is
5.78E-02 and is observed at t= 40 s. Moreover, a comparison of the
total calculation time is also presented in Table 15. As can be seen from
Table 15, the time spent with 48 CPUs is much less than computing
time with a CPU (It is 36.33 times faster). This indicates an increase in
the performance of this method and a large amount of time saving.

3. Conclusions

A new computer code is developed for neutronic analysis of 3-D
transient systems with explicit representation of delayed neutrons
based on a Monte Carlo method. The code, named MCSP (Monte Carlo
dynamic Simulation of Particles tracking), is capable to simulate the
systems with time-varying geometry and cross sections with either
continuous or multi-group cross section in a 3-D desired geometry
without the restrictions of previous methods (numerous simplifications
like spatial homogenization, multi-group energy collapsing, etc.). To
speed up the calculation The MCSP is programming in parallel pro-
cessing as well. The MCSP is evaluated with standard benchmark pro-
blems such as C5G7, LMW, TWIGL, etc. with satisfactory agreements,

and it can be employed to analyze dynamics of complex systems. It
should be added that if the MCSP code couples with a thermal-hy-
draulics code, it capable to investigate of realistic accident scenarios.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.pnucene.2019.03.024.
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